OAT PROTEIN: HEALTH BENEFITS AND PRODUCT APPLICATIONS

Innovating to Meet Nutrition, Health, and Wellness Needs Every Day

To learn more about Tate & Lyle ingredients and innovations, please visit www.foodnutritionknowledge.info and www.tateandlyle.com.
PROTEIN INTAKE RECOMMENDATIONS AND NEEDS

Protein as a macronutrient
Protein is required to meet nutritional needs and to support health and well-being. This macronutrient is needed to meet human nitrogen requirements and provide indispensable amino acids (also known as essential amino acids). Amino acids are classified as those that cannot be synthesised by the body (indispensable or essential) and those that the body can synthesise (dispensable or nonessential). However, some are also conditionally indispensable, becoming essential under specific pathological or physiological conditions. Protein is an important structural and functional component of organs, muscles, biological fluids, and hormones.

Tate & Lyle’s PrOatein® Oat Protein, like the oat grain it comes from, contains significant amounts of dietary indispensable BCAAs. PrOatein® Oat Protein is a natural* protein concentrate ingredient from oats, which can help meet the fast-growing consumer demand for products containing oats and protein-enriched foods.

Global protein intakes
The 2007 World Health Organization (WHO) Technical Report estimates that the average protein requirement for adult maintenance is 105 mg nitrogen per kg body weight per day, or 0.66 g protein per kg body weight per day. In countries with lower average income, 3% of total dietary energy is from animal protein sources; 11% is from roots and tubers; 6% is from pulses, nuts, and oilseeds; and the remainder is primarily from cereal-based staple foods.

Although the production of livestock has increased in developing countries, the consumption of protein in these countries remains inadequate. Additionally, the protein consumed is generally low quality, lacking some of the amino acids required for proper growth and development.

Not every protein source provides all of the amino acids needed for growth and development, and not all protein is equally bioavailable from food sources; however, bioavailability can change with food processing.

Protein quality
Protein digestibility, a component of protein quality, determines the amount of ingested amino acids that are available to the body after digestion and absorption. Ileal digestibility is the current recommended method for determination of dietary amino acid digestion (further described on the next page), and high levels of digestibility are characteristic for animal proteins and certain purified and concentrated vegetable proteins.

The Food and Agriculture Organization (FAO) of the United Nations Expert Consultation on Protein Quality Evaluation, in conjunction with the WHO, reviewed protein quality assessment and the amino acid scoring. The 1991 Consultation Report concluded that the Protein Digestibility-Corrected Amino Acid Score (PDCAAS) method, which adjusts amino acid content of the protein source by faecal digestibility correction, was the most suitable evaluation of protein quality for humans.

This method compares the indispensable amino acid content

*Labeling and/or claims may vary by country. Prospective purchasers are advised to conduct their own tests, studies, and regulatory review to determine the fitness of Tate & Lyle products for their particular purposes, product claims, or specifications.
PrOatein® Oat Protein is a natural protein concentrate ingredient from oats, which can help meet the fast-growing consumer demand for products containing oats and protein-enriched foods.

An update was published in 2013 and recommended that true ileal digestibility of amino acids from protein sources be accounted for rather than the overall faecal digestibility of a protein. The updated report also includes the adjusted amino acid adequacy reference value recommendations by age group, Table 1.

FAO/WHO now considers the digestible indispensable amino acid score (DIAAS), adjusted for ileal digestibility, to be a replacement for the PDCAAS.

PrOatein® Oat Protein meets nearly all of the FAO 2013 amino acids pattern requirements for adults except for lysine, the limiting amino acid in oat protein. PrOatein® Oat Protein contains at least 10% more sulfur amino acids (SAA) and tryptophan than pea protein; more SAAs and valine than soy protein; and has more of each indispensable amino acid compared to wheat (Figure 1). Combining plant proteins can create a more complete amino acid content in finished food products.

Protein consumption needs for younger populations

Both the quantity and quality of the protein consumed is important to early growth and development as it is well-recognised that protein consumption during this development window can have effects on long-term health, including influencing body composition. The recommended protein intake for children at two years of age is 0.97 g/kg body weight to ensure adequate intake, which is greater than the minimal amount of protein required for growth. Additionally, the recommended amino acid scoring patterns for young children (aged three years and younger) were revised in the 2013 FAO/WHO report (Table 1). Protein requirements are greater during periods of rapid growth related to the increased demands of growth and increases in body mass and height (see Table 2); furthermore, development of muscles requires additional amino acids.

### Table 1

Recommended amino acid scoring patterns

<table>
<thead>
<tr>
<th>Age groups</th>
<th>Scoring pattern (mg/g protein) requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age groups</td>
</tr>
<tr>
<td>Child (aged 6 months to 3 years)</td>
<td></td>
</tr>
<tr>
<td>Older child, adolescent, and adult (&gt;3 years of age)</td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup> Adapted from Chapter 4, Table 5 of the 2013 FAO report

<sup>b</sup> Sulfur Amino Acids: Methionine and Cysteine

<sup>c</sup> Aromatic Amino Acids: Phenylalanine and Tyrosine
Increased protein consumption benefits for older populations

Current and emerging evidence suggests that older adults (aged 65 years and older) may need more dietary protein than younger adults to support good health, promote recovery from illness, prevent age-related muscle loss, and maintain muscle functionality.\(^{13,14}\) Ageing muscle is less sensitive to the presence of amino acids and may require higher quantities of protein to stimulate muscle protein synthesis (MPS) and accrue muscle proteins.\(^{15}\) Older adults also may need more protein to offset conditions associated with chronic and acute diseases.\(^{13,16,17}\) A recent systematic review examined the health effects of protein intake in healthy elderly adults and found that optimal protein intake is likely higher than the current estimated average requirement (EAR) based on nitrogen balance studies.\(^{16}\)

The PROT-AGE Study Group, an international group of experts representing a wide-range of clinical and research areas, including geriatrics, internal medicine, endocrinology, nutrition, exercise physiology, gastroenterology, and nephrology, was appointed by the European Union Geriatric Medicine Society, in cooperation with other scientific organisations, to review dietary protein needs with ageing.\(^{13}\) The PROT-AGE Study Group published evidence-based recommendations in 2013 for optimal protein intake by older adults recommending an average intake of at least 1.0-1.2 g/kg body weight per day for people greater than 65 years of age to maintain and regain lean body mass and function.\(^{13}\) Additionally, they recommended higher intakes (greater than 1.2 g/kg body weight per day) for those who are physically active. These increased intake targets are recommended due to the reduced ability to use available protein associated with advanced age in order to prevent loss of function in older adults.\(^{13}\)

Table 2
Minimum protein requirements (g/kg/day)\(^{4}\)

<table>
<thead>
<tr>
<th>Age</th>
<th>Maintenance</th>
<th>Growth</th>
<th>Total Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth to 6 months</td>
<td>0.66</td>
<td>0.46</td>
<td>1.12</td>
</tr>
<tr>
<td>1 to 2 years</td>
<td>0.66</td>
<td>0.20</td>
<td>0.86</td>
</tr>
<tr>
<td>3 to 10 years</td>
<td>0.66</td>
<td>0.07</td>
<td>0.73</td>
</tr>
<tr>
<td>11 to 14 years</td>
<td>0.66</td>
<td>0.07</td>
<td>0.73</td>
</tr>
<tr>
<td>15 to 18 years</td>
<td>0.66</td>
<td>0.04</td>
<td>0.70</td>
</tr>
<tr>
<td>18 years and older</td>
<td>0.66</td>
<td>0.00</td>
<td>0.66</td>
</tr>
</tbody>
</table>

\(^{a}\)Three market comparison samples were obtained for soy, pea, and wheat (n=3 for each, n=6 for oat protein).

\(^{b}\)The amino acid and total protein analyses were run at Medallion Laboratories (Minneapolis, MN) via AOAC methods 994.12 and 992.15.
Sarcopenia

Sarcopenia, the loss of fat-free mass (FFM) during age-related muscle wasting, can compromise the functional abilities of the elderly. BCAAs have been shown to attenuate muscle wasting, which is important in the prevention of sarcopenia. Dietary leucine may attenuate age-related loss in muscle mass and strength, and may be important in preserving lean muscle mass during ageing. Furthermore, emerging evidence suggests that the elderly specifically may benefit from distributing protein intake evenly throughout the day to promote an optimal per meal stimulation of MPS. Leucine is thought to play a central role in mediating mRNA translation for MPS, and it is recommended that sufficient leucine is provided with dietary protein intake at each meal for the elderly population. Leucine, isoleucine, and valine are BCAAs that are abundant in PrOatein® Oat Protein and are known to influence MPS.

Muscle growth and maintenance

Dietary protein directly contributes to the maintenance of FFM. Maintaining skeletal muscle mass is important in conditions such as obesity, hyperlipidemia, cardiovascular disease (CVD), and type 2 diabetes because of the metabolic function of muscle in the body.

Satiety and weight management

Obesity continues to be a major public health concern globally. While energy balance is key to weight management, scientific research suggests that a diet rich in high-quality protein is one dietary strategy to aid in acute postprandial satiety and thus help with weight maintenance. High-protein diets have been successful at preserving lean body mass during weight loss, and diets using meal replacements that provide higher protein with moderate fat have been shown to assist in weight maintenance. In the context of calorie reduction, a recent review found that a protein intake of 0.8-1.2 g/kg body weight per day is sufficient to sustain satiety, energy expenditure, and FFM independent of dietary carbohydrate content. The protein content of the diet has long been recognised for its effect on food intake because high protein diets may promote satiety through reduced calorie intake, increase the postprandial perception of satiety, and stimulate the endocrine hormones in the gastrointestinal tract known to increase satiety. Some research supports that a higher protein intake (25% of total energy) is effective for appetite control and satiety in overweight and obese men during hypocaloric-induced weight loss. Additionally, when overweight and obese teen girls consumed a high-protein breakfast meal (35 g protein), there was a
While energy balance is key to weight management, scientific research suggests that a diet rich in high quality protein is one dietary strategy to aid in acute postprandial satiety and thus help with weight maintenance.

significant reduction in four-hour cravings for savory foods. Also, it has been shown that consumption of an afternoon yoghurt snack (containing 14 g protein) versus crackers (containing 0 g protein) versus chocolate (containing 2 g protein) can increase the time to initiation of the next meal and decrease caloric intake in healthy women. Gut hormones work collectively in response to meal consumption to help regulate food intake. Changes in perception of postprandial hunger, satiety, and food intake are positively associated with meals containing proteins. The ratio of macronutrients in a study of isocaloric meals demonstrated that a low-carbohydrate/high-protein diet (65.0% calories from protein, 17.2% calories from carbohydrate) significantly increased peptide YY (PYY) and decreased hunger in humans when compared to a high-carbohydrate/low-protein diet (17.8% calories from protein and 64.5% calories from carbohydrates). This effect was seen in both lean and overweight individuals. Although more research is needed in this area, increasing protein intake may be one way to help manage food intake and may help to maintain a healthy body weight.

**Cardiovascular benefits**

Research suggests the consumption of plant proteins may have protective effects against chronic diseases and may contribute to decreased circulating cholesterol levels. Plant protein food sources are generally low in fat and can displace other dietary sources of protein that provide higher amounts of fat. Furthermore, it is well known that diets high in fruits, whole grains, and vegetables are associated with a lower rate of CVD.

Prospective cohort studies support that high consumption of plant-based foods is also associated with a significantly lower risk of coronary artery disease and stroke. Higher protein diets in general may improve blood pressure, triglyceride levels, and reduce adiposity according to a recent systematic review of 74 randomised clinical trials.

**Figure 2**

Indispensable amino acid contents of PrOatein® Oat Protein

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Histidine</th>
<th>Isoleucine</th>
<th>Leucine</th>
<th>Lysine</th>
<th>SAA</th>
<th>AAA</th>
<th>Threonine</th>
<th>Trytophan</th>
<th>Valine</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/g protein +SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>80</td>
</tr>
</tbody>
</table>

*Average of six independently tested lots of PrOatein® Protein.

* PrOatein® Oat Protein has a minimum 50% protein content specification, with a typical range of 52-56% protein content (on a dry matter basis).

**Labeling and/or claims may vary by country. Prospective purchasers are advised to conduct their own tests, studies, and regulatory review to determine the fitness of Tate & Lyle products for their particular purposes, product claims, or specifications.
PROATEIN® OAT PROTEIN CONCENTRATE

In addition to its typical 55%* protein content, PrOatein® Oat Protein contains:
• Typically 16-19% naturally occurring oat oil composed of:
  – Primarily palmitic, oleic, and linoleic fatty acids
  – A high concentration of monounsaturated fatty acids (oleic acid) and a high amount of polyunsaturated fatty acids (mainly omega-6)
  – Micronutrients with antioxidant properties, including vitamin E (tocopherols) and avenanthramides
  – No cholesterol, since this is a plant-based protein
• Naturally-occurring oat maltodextrins (approx. 20-24%)
• A small amount (2%) of oat beta glucan soluble fibre
• PrOatein® Oat Protein has a great taste compared to other isolated proteins
• PrOatein® Oat Protein is a natural protein concentrate ingredient made from oats that can help meet the fast-growing consumer demand for protein-enriched foods and products containing oats
• PrOatein® Oat Protein is vegan-friendly

PROATEIN® OAT PROTEIN CONCENTRATE

Amino acid content
PrOatein® Oat Protein** is made from Swedish oats and is vegetarian- and vegan-friendly. PrOatein® Oat Protein contains many of the amino acids needed for growth and development and has an abundance of leucine, isoleucine, and valine, the BCAAs known to be involved in muscle protein synthesis (Figure 2). As for oats in general, lysine is the limiting amino acid in oat protein. Combining oat protein with other plant proteins, such as pea protein, can create a more complete amino acid content in finished food products while still remaining vegetarian and vegan. When adjusting for a 91% protein digestibility (based on rolled oats’), the PDCAAS for PrOatein® Oat Protein is 46%.

PrOatein® Oat Protein has a great taste compared to other isolated proteins such as soy protein. PrOatein® Oat Protein is a natural protein concentrate from oats that can help meet the fast-growing consumer demand for protein-enriched foods.

Use PrOatein® Oat Protein in a wide-variety of food applications and nutritional supplements
Oat-based products and protein-fortified foods are becoming increasingly popular in the marketplace. By using PrOatein® Oat Protein, a wide-variety of food applications and nutritional supplements can provide the benefits of added protein that consumers desire while delivering great taste that consumers expect.

PrOatein® Oat Protein performs well in many food applications including bars, breakfast cereals and porridges, breads, cookies, supplements, and sports nutrition beverages. With its mild cereal taste, PrOatein® Oat Protein also makes a perfect base for bar fillings. PrOatein® Oat Protein concentrate is a natural clean-label ingredient made from oats without the addition of chemicals or solvents.
INNOVATING TO MEET NUTRITION, HEALTH, AND WELLNESS NEEDS EVERY DAY

Conclusions

Protein is an important part of the diet and plays an essential role in the structural and functional components of the body. PrOatein® Oat Protein, like the oat grain it comes from, contains significant amounts of dietary indispensable amino acids, particularly the BCAAs leucine, isoleucine, and valine, which are important for muscle growth and repair in people of all ages. Oat protein contains more SAA and tryptophan than pea protein; more SAA and valine than soy protein; and has more indispensable amino acids than wheat protein. PrOatein® Oat Protein also has a great taste compared to other isolated plant proteins.

Ongoing research indicates that dietary proteins may induce satiety and could thus help with maintenance of body weight. Consequently, supplementing commonly-consumed foods with protein may help increase satiety and possibly decrease total energy intake.

A commitment to innovation

Tate & Lyle, a global leader in wellness innovation, is committed to delivering innovative ingredients that can be incorporated into great-tasting foods to help consumers meet their nutrition, health, and wellness needs every day. That is because Tate & Lyle invests heavily in innovation and research and in developing ingredients that can be incorporated into a wide-variety of food and beverage solutions. Teams of food and nutrition scientists are continuously innovating, researching, and testing ingredients that will meet current and future health and nutrition needs.

At the same time, Tate & Lyle has a robust market research program designed to provide the necessary insights on consumer preferences around the world. The research program allows Tate & Lyle to customise its offerings and provide tailor-made solutions in local and regional markets.

Better-for-you ingredients for health and wellness

In response to global public health efforts calling for people to reduce calories and sodium and increase fibre intakes, Tate & Lyle offers a number of innovative ingredient solutions that meet these needs.

To learn more about Tate & Lyle ingredients and innovation as well as health benefits and relevant research, please visit www.foodnutritionknowledge.info and www.tateandlyle.com.


